Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall | Parasites & Vectors

  • Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, et al. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Globe Health. 2015;3:e564–75.

    PubMed PubMed Central Google Scholar

  • Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15:85–94.

    PubMed Google Scholar

  • Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol. 2018;48:1–12.

    PubMed Google Scholar

  • Koehler AV, Korhonen PK, Hall RS, Young ND, Wang T, Haydon SR, et al. Use of a bioinformatic-assisted primer design strategy to establish a new nested PCR-based method for cryptosporidium. parasite vectors. 2017;10:509.

    PubMed PubMed Central Google Scholar

  • Ryan U, Zahedi A, Paparini A. cryptosporidium in humans and animals—a one health approach to prophylaxis. Parasite Immunol. 2016;38:535–47.

    CAS PubMed Google Scholar

  • Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, et al. Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the species adapted to the nutria (Myocastor coypus). Microorganisms. 2021;9:813.

    PubMed PubMed Central Google Scholar

  • Villanueva MT. Infectious diseases: decrypting cryptosporidium. Nat Rev Drug Discov. 2017;16:527.

    CAS PubMed Google Scholar

  • Lendner M, Daugschies A. cryptosporidium infections: molecular advances. Parasitology. 2014;141:1511–32.

    PubMed Google Scholar

  • Swale C, Bougdour A, Gnahoui-David A, Tottey J, Georgeault S, Laurent F, et al. Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls cryptosporidium infestation. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aax7161.

    PubMed Google Scholar

  • Chavez MA, White AC Jr. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther. 2018;16:655–61.

    CAS PubMed Google Scholar

  • Jenkins MB, Eaglesham BS, Anthony LC, Kachlany SC, Bowman DD, Ghiorse WC. Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 2010;76:1926–34.

    CAS PubMed PubMed Central Google Scholar

  • Petry F. Structural analysis of Cryptosporidium parvum. Microsc Microanal. 2004;10:586–601.

    CAS PubMed Google Scholar

  • Possenti A, Cherchi S, Bertuccini L, Pozio E, Dubey JP, Spano F. Molecular characterization of a novel family of cysteine-rich proteins of Toxoplasma gondii and ultrastructural evidence of oocyst wall localization. Int J Parasitol. 2010;40:1639–49.

    CAS PubMed Google Scholar

  • Cui Z, Wang R, Huang J, Wang H, Zhao J, Luo N, et al. Cryptosporidiosis caused by Cryptosporidium parvum subtype IIdA15G1 at a dairy farm in Northwestern China. parasite vectors. 2014;7:529.

    PubMed PubMed Central Google Scholar

  • Brar APS, Sood NK, Kaur P, Singla LD, Sandhu BS, Gupta K, et al. Periurban outbreaks of bovine calf scours in Northern India caused by cryptosporidium in association with other enteropathogens. Epidemiol Infect. 2017;145:2717–26.

    CAS PubMed Google Scholar

  • Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC. Cryptosporidiosis outbreaks—United States, 2009–2017. MMWR Morb Mortal Wkly Rep. 2019;68:568–72.

    PubMed PubMed Central Google Scholar

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304:441–5.

    CAS PubMed Google Scholar

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, et al. The genome of Cryptosporidium hominis. Nature. 2004;431:1107–12.

    CAS PubMed Google Scholar

  • Snelling WJ, Lin Q, Moore JE, Millar BC, Tosini F, Pozio E, et al. Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics. 2007;6:346–55.

    CAS PubMed Google Scholar

  • Sanderson SJ, Xia D, Prieto H, Yates J, Heiges M, Kissinger JC, et al. Determining the protein repertoire of Cryptosporidium parvum sporozoites. proteomics. 2008;8:1398–414.

    CAS PubMed PubMed Central Google Scholar

  • Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. the Cryptosporidium parvum transcriptome during in vitro development. PLoS ONE. 2012;7:e31715.

    CAS PubMed PubMed Central Google Scholar

  • Arrowood MJ, Sterling CR. Isolation of cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J Parasitol. 1987;73:314–9.

    CAS PubMed Google Scholar

  • Rasmussen KR, Larsen NC, Healey MC. Complete development of Cryptosporidium parvum in a human endometrial carcinoma cell line. Infectious Immun. 1993;61:1482–5.

    CAS PubMed PubMed Central Google Scholar

  • Peckova R, Stuart PD, Sak B, Kvetonova D, Kvac M, Foitova I. Statistical comparison of excystation methods in Cryptosporidium parvum oocysts. Fat Parasitol. 2016;230:1–5.

    PubMed Google Scholar

  • Harris JR, Petry F. Cryptosporidium parvum: structural components of the oocyst wall. J Parasitol. 1999;85:839–49.

    CAS PubMed Google Scholar

  • Possenti A, Fratini F, Fantozzi L, Pozio E, Dubey JP, Ponzi M, et al. Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii reveals commitment to a host-independent lifestyle. BMC Genomics. 2013;14:183.

    CAS PubMed PubMed Central Google Scholar

  • Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, et al. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteomics. 2013;12:515–28.

    CAS PubMed Google Scholar

  • Gene Ontology Consortium. The gene ontology project in 2008. Nucleic Acids Res. 2008;36:D440–4.

    Google Scholar

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.

    CAS PubMed Google Scholar

  • Zhang TY, Gao X, Wang DQ, Zhao JX, Zhang N, Li QS, et al. A single-pass type I membrane protein from the apicomplexan parasite Cryptosporidium parvum with nanomolar binding affinity to host cell surface. Microorganisms. 2021;9:1015.

    CAS PubMed PubMed Central Google Scholar

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM. cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013;26:115–34.

    CAS PubMed PubMed Central Google Scholar

  • Fayer R, Nerad T. Effects of low temperatures on viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 1996;62:1431–3.

    CAS PubMed PubMed Central Google Scholar

  • Tu V, Mayoral J, Sugi T, Tomita T, Han B, Ma YF, et al. Enrichment and proteomic characterization of the cyst wall from in vitro Toxoplasma gondii cysts. MBio. 2019. https://doi.org/10.1128/mBio.00469-19.

    PubMed PubMed Central Google Scholar

  • Zhou CX, Zhu XQ, Elsheikha HM, He S, Li Q, Zhou DH, et al. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. J Proteomics. 2016;148:12–9.

    CAS PubMed Google Scholar

  • Munoz C, San Francisco J, Gutierrez B, Gonzalez J. Role of the ubiquitin-proteasome systems in the biology and virulence of protozoan parasites. Biomed Res Int. 2015;2015:141526.

    PubMed PubMed Central Google Scholar

  • Shaw MK, He CY, Rose DS, Tilney LG. Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii. Parasitology. 2000;121:35–47.

    CAS PubMed Google Scholar

  • Ndao M, Nath-Chowdhury M, Sajid M, Marcus V, Mashiyama ST, Sakanari J, et al. A cysteine ​​protease inhibitor rescues mice from a lethal Cryptosporidium parvum infestation. Antimicrobial Agent Chemother. 2013;57:6063–73.

    CAS PubMed PubMed Central Google Scholar

  • Tosini F, Agnoli A, Mele R, Gomez Morales MA, Pozio E. A new modular protein of Cryptosporidium parvum, with ricin B and LCCL domains, expressed in the sporozoite invasive stage. Mol Biochem Parasitol. 2004;134:137–47.

    CAS PubMed Google Scholar

  • Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, Hadsall KZ, et al. cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infectious Immun. 2004;72:980–7.

    CAS PubMed PubMed Central Google Scholar

  • Wiedmer S, Buder U, Bleischwitz S, Kurth M. Distribution and processing of Eimeria nieschulzi OWP13, a new protein of the COWP family. J Eukaryotic Microbiol. 2018;65:518–30.

    CAS PubMed Google Scholar

  • Spano F, Puri C, Ranucci L, Putignani L, Crisanti A. Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology. 1997;114:427–37.

    CAS PubMed Google Scholar

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.

    CAS PubMed Google Scholar

  • Leave a Reply

    Your email address will not be published.

    Back to top button